Envelope Determinants of Equine Lentiviral Vaccine Protection
نویسندگان
چکیده
Lentiviral envelope (Env) antigenic variation and associated immune evasion present major obstacles to vaccine development. The concept that Env is a critical determinant for vaccine efficacy is well accepted, however defined correlates of protection associated with Env variation have yet to be determined. We reported an attenuated equine infectious anemia virus (EIAV) vaccine study that directly examined the effect of lentiviral Env sequence variation on vaccine efficacy. The study identified a significant, inverse, linear correlation between vaccine efficacy and increasing divergence of the challenge virus Env gp90 protein compared to the vaccine virus gp90. The report demonstrated approximately 100% protection of immunized ponies from disease after challenge by virus with a homologous gp90 (EV0), and roughly 40% protection against challenge by virus (EV13) with a gp90 13% divergent from the vaccine strain. In the current study we examine whether the protection observed when challenging with the EV0 strain could be conferred to animals via chimeric challenge viruses between the EV0 and EV13 strains, allowing for mapping of protection to specific Env sequences. Viruses containing the EV13 proviral backbone and selected domains of the EV0 gp90 were constructed and in vitro and in vivo infectivity examined. Vaccine efficacy studies indicated that homology between the vaccine strain gp90 and the N-terminus of the challenge strain gp90 was capable of inducing immunity that resulted in significantly lower levels of post-challenge virus and significantly delayed the onset of disease. However, a homologous N-terminal region alone inserted in the EV13 backbone could not impart the 100% protection observed with the EV0 strain. Data presented here denote the complicated and potentially contradictory relationship between in vitro virulence and in vivo pathogenicity. The study highlights the importance of structural conformation for immunogens and emphasizes the need for antibody binding, not neutralizing, assays that correlate with vaccine protection.
منابع مشابه
Envelope determinants of equine infectious anemia virus vaccine protection and the effects of sequence variation on immune recognition.
A highly effective attenuated equine infectious anemia virus (EIAV) vaccine (EIAV(D9)) capable of protecting 100% of horses from disease induced by a homologous Env challenge strain (EIAV(PV)) was recently tested in ponies to determine the level of protection against divergent Env challenge strains (J. K. Craigo, B. S. Zhang, S. Barnes, T. L. Tagmyer, S. J. Cook, C. J. Issel, and R. C. Montelar...
متن کاملProtective Efficacy of Centralized and Polyvalent Envelope Immunogens in an Attenuated Equine Lentivirus Vaccine
Lentiviral Envelope (Env) antigenic variation and related immune evasion present major hurdles to effective vaccine development. Centralized Env immunogens that minimize the genetic distance between vaccine proteins and circulating viral isolates are an area of increasing study in HIV vaccinology. To date, the efficacy of centralized immunogens has not been evaluated in the context of an animal...
متن کاملIdentifying the Conditions Under Which Antibodies Protect Against Infection by Equine Infectious Anemia Virus
The ability to predict the conditions under which antibodies protect against viral infection would transform our approach to vaccine development. A more complete understanding is needed of antibody protection against lentivirus infection, as well as the role of mutation in resistance to an antibody vaccine. Recently, an example of antibody-mediated vaccine protection has been shown via passive ...
متن کاملDirected molecular evolution improves the immunogenicity and protective efficacy of a Venezuelan equine encephalitis virus DNA vaccine.
We employed directed molecular evolution to improve the cross-reactivity and immunogenicity of the Venezuelan equine encephalitis virus (VEEV) envelope glycoproteins. The DNA encoding the E1 and E2 proteins from VEEV subtypes IA/B and IE, Mucambo virus (MUCV), and eastern and western equine encephalitis viruses (EEEV and WEEV) were recombined in vitro to create libraries of chimeric genes expre...
متن کاملThe Optimisation of Pseudotyped Viruses for the Characterisation of Immune Responses to Equine Influenza Virus
Pseudotyped viruses (PVs) produced by co-transfecting cells with plasmids expressing lentiviral core proteins and viral envelope proteins are potentially powerful tools for studying various aspects of equine influenza virus (EIV) biology. The aim of this study was to optimise production of equine influenza PVs. Co-transfection of the HAT protease to activate the haemagglutinin (HA) yielded a hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013